Dual yolk-shell structure of carbon and silica-coated silicon for high-performance lithium-ion batteries

نویسندگان

  • L. Y. Yang
  • H. Z. Li
  • J. Liu
  • Z. Q. Sun
  • S. S. Tang
  • M. Lei
چکیده

Silicon batteries have attracted much attention in recent years due to their high theoretical capacity, although a rapid capacity fade is normally observed, attributed mainly to volume expansion during lithiation. Here, we report for the first time successful synthesis of Si/void/SiO2/void/C nanostructures. The synthesis strategy only involves selective etching of SiO2 in Si/SiO2/C structures with hydrofluoric acid solution. Compared with reported results, such novel structures include a hard SiO2-coated layer, a conductive carbon-coated layer, and two internal void spaces. In the structures, the carbon can enhance conductivity, the SiO2 layer has mechanically strong qualities, and the two internal void spaces can confine and accommodate volume expansion of silicon during lithiation. Therefore, these specially designed dual yolk-shell structures exhibit a stable and high capacity of 956 mA h g(-1) after 430 cycles with capacity retention of 83%, while the capacity of Si/C core-shell structures rapidly decreases in the first ten cycles under the same experimental conditions. The novel dual yolk-shell structures developed for Si can also be extended to other battery materials that undergo large volume changes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of Hard Carbon- Silicon Nanocomposite as Anode Active Material for Lithium-Ion Batteries

In this research, using phenolic resin as the precursor of carbon and various amounts of ethylene glycol as a pore former, porous samples of hard carbon were synthesized. Samples were characterized by x-ray diffraction (XRD) and N2 adsorption-desorption methods. Broad diffraction peaks represent the amorphous structure of samples. Moreover, the gas adsorption-desorption curves showed that the a...

متن کامل

An Effective Nitrogen Doping Technique for Improving the Performance of Lithium Ion Batteries with CNT Based Electrodes

Lithium ion batteries are among the most used rechargeable batteries in the world. Carbon nanostructures including carbon nanotubes (CNTs) are considered as important electrode materials for this kind of batteries. Therefore improving the performance of these carbon based electrodes in Lithium ion batteries is an important issue and attracts much attention in the battery community. In this manu...

متن کامل

Interfacial Mechanics of Carbon

Heterogeneous nanostructures may offer better or new properties that are not originally present in constituting components by judiciously combining two or more different materials. For example, silicon coating on carbon nanotubes (CNTs) improves the thermal stability of carbon nanotubes by acting as a protective fi lm, [ 1 ] and silicon-coated CNT composites have been proposed as promising lith...

متن کامل

Facile Synthesis of SiO2@C Nanoparticles Anchored on MWNT as High-Performance Anode Materials for Li-ion Batteries

Carbon-coated silica nanoparticles anchored on multi-walled carbon nanotubes (SiO2@C/MWNT composite) were synthesized via a simple and facile sol-gel method followed by heat treatment. Scanning and transmission electron microscopy (SEM and TEM) studies confirmed densely anchoring the carbon-coated SiO2 nanoparticles onto a flexible MWNT conductive network, which facilitated fast electron and li...

متن کامل

Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries.

We introduce a novel design of carbon-silicon core-shell nanowires for high power and long life lithium battery electrodes. Amorphous silicon was coated onto carbon nanofibers to form a core-shell structure and the resulted core-shell nanowires showed great performance as anode material. Since carbon has a much smaller capacity compared to silicon, the carbon core experiences less structural st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015